A Novel Immune Evasion Strategy of Candida albicans: Proteolytic Cleavage of a Salivary Antimicrobial Peptide
نویسندگان
چکیده
Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, however, are not clear. In the oral cavity, salivary antimicrobial peptides are considered to be an important part of the host innate defense system in the prevention of microbial colonization. Histatin-5 specifically has exhibited potent activity against C. albicans. Our previous studies have shown histatin-5 levels to be significantly reduced in the saliva of HIV+ individuals, indicating an important role for histatin-5 in keeping C. albicans in its commensal stage. The versatility in the pathogenic potential of C. albicans is the result of its ability to adapt through the regulation of virulence determinants, most notably of which are proteolytic enzymes (Saps), involved in tissue degradation. In this study, we show that C. albicans cells efficiently and rapidly degrade histatin-5, resulting in loss of its anti-candidal potency. In addition, we demonstrate that this cellular activity is due to proteolysis by a member of the secreted aspartic proteases (Sap) family involved in C. albicans pathogenesis. Specifically, the proteolysis was attributed to Sap9, in turn identifying histatin-5 as the first host-specific substrate for that isoenzyme. These findings demonstrate for the first time the ability of a specific C. albicans enzyme to degrade and deactivate a host antimicrobial peptide involved in the protection of the oral mucosa against C. albicans, thereby providing new insights into the factors directing the transition of C. albicans from commensal to pathogen, with important clinical implications for alternative therapy. This report characterizes the first defined mechanism behind the enhanced susceptibility of HIV+ individuals to oral candidiasis since the emergence of HIV.
منابع مشابه
Candida albicans Shed Msb2 and Host Mucins Affect the Candidacidal Activity of Salivary Hst 5.
Salivary Histatin 5 (Hst 5) is an antimicrobial peptide that exhibits potent antifungal activity towards Candida albicans, the causative agent of oral candidiasis. However, it exhibits limited activity in vivo, largely due to inactivation by salivary components of both host and pathogen origin. Proteins secreted by C. albicans during infection such as secreted aspartyl proteases (Saps) and shed...
متن کاملSynthesis, In vitro Antimicrobial and Cytotoxic Activities of Some Novel Bis- 1, 3, 4-oxadiazoles
A series of novel bis-1,3,4-oxadizaoles were synthesized by oxidative cyclisation of respective Schiff bases derived from dicarbohydrazide using ceric ammonium nitrate (CAN) as catalyst. The synthesized compounds were screened for in vitro antibacterial activity against Staphylococcus aureus (MTCC 87), Escherichia coli (MTCC 46) and antifungal activity against Candida albicans (NCIM 3471) by tw...
متن کاملThe action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5.
Candida albicans, belonging to the most common fungal pathogens of humans, exploits many virulence factors to infect the host, of which the most important is a family of ten secreted aspartic proteases (Saps) that cleave numerous peptides and proteins, often deregulating the host's biochemical homeostasis. It was recently shown that C. albicans cells can inactivate histatin5 (His5), a salivary ...
متن کاملPossible role of secreted proteinases in Candida albicans infections.
Extracellular proteolytic activity of the human pathogen Candida albicans is due to the activity of at least nine secreted aspartyl proteinase (Sap) isoenzymes. SAP1-9 genes are differentially regulated both in vitro and in vivo at the transcriptional level. All SAP genes are translated into preproenzymes, which are processed by a signal peptidase and a Kex2-like proteinase. In vitro experiment...
متن کاملDNA interaction and antimicrobial studies of novel copper (II) complex having ternary Schiff base
A novel ternary Schiff base ligand (HL) of ONO type and its copper (II) complex weresynthesised using 2-aminophenol and o-acetoacetotoluidide. They have been characterised by theusual analytical and spectral methods. The interaction of the complex with calf-thymus (CT)DNA has been investigated by UV-Vis, viscosity measurement, cyclic voltammetry anddifferential pulse voltammetry studies. The re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009